Van Leeuwen, G., see Hommes, F. A 320	acid oxidase. II. Spectrophotometric
VARRONE, S., see ROCHE, J 188	analysis using a substrate-substitute). 41
Vogel, H. J., see Gill, J. W 200	YAGI, T. AND T. OZAWA
WHITTAKER, P. A., see REDFEARN, E. R. 440	(Complex formation of apo-enzyme,
WIELAND, O., see GRIES, F. A 615	coenzyme and substrate of D-amino
WINDMUELLER, H. G. AND N. O. KAPLAN	acid oxidase. III. Crystallization of
(Solubilization and purification of di-	artificial Michaelis complexes) 420
phosphopyridine nucleotidase from pig	YANKWICH, P. E., see LYNN, K. R 51:
brain)	YASUDA, M., see NAGAI, T 20
YAGI, K. AND T. OZAWA	ZILLIKEN, F., see LASH, J. W 313
(Complex formation of apo-enzyme,	ZILLIKEN, F., see HOMMES, F 320
coenzyme and substrute of D-amino	

SUBJECT INDEX

Acciabularia, nucleate and anucleate,		action of, with macromolecules from	
behaviour of free amino acids in,		electric organ of electric eel (Hassón)	275
(Bremer, Schweiger, Schweiger)	3 80	Amphioxus, — treated with ¹³¹ I; identi-	
Acetamide, N-(2-fluorenyl)-, 2-imino-1,2-	•	fication of labeled thyroxine and tri-	
fluorenoquinone as me abolite in vitro		iodothyronine in, (Tong, Kerkof,	
of; protein labelling by, (Gut-		Chaikoff)	326
MANN, KING)	304	Angiotensin, phenoxyl groups of —— pep-	J- •
[14C]Acetate, incorporation of — in	321	tides; titration of, with sensitive spec-	
resting cells of Rhodosparillum rubrum;		trophotometric method (PAIVA, PAIVA)	339
early products of, (BENEDICT)	620	Apo-enzyme, — of D-amino acidoxidase;	339
Acetylcholine, conformation of, (FELLMAN,	020	complex formation of, and coenzyme	
FUJITA)	227	and substrate (YAGI, OZAWA) 413,	
Adenine, uptake of, by brewers' yeast	227		420
(Harris, Thompson)	202	Ascorbic acid, oxidation of ——by oxygen;	
Adenosine triphosphate, hydrolysis of —	293	influence of sulfur compound on cataly-	_
			159
by myosin; effect of temperature on		Ascorbic acid, oxydation of tyrosine and	
rate of, (Levy, Sharon, Ryan, Kosh-	0	tyrosine-containing peptides and pro-	
	118	teins by mushroom polyphenoloxidase	_
Adipose tissue, brown —— of rat; stimu-		in presence of, (ROLLAND, LISSITZKY).	83
lation of phosphogluconate oxidation		Ascorbic acid oxidase, reaction inacti-	
pathway by pyruvate under anaerobic		vation of, (Tokuyama, Dawson)	427
	153	Aspergillus niger, molybdenum toxicity in	
Adrenal gland, rat — preparations;		; influence of sulfur compounds on,	
effect of Ca ²⁺ and freezing on in vitro		(Raman, Sivarama Sastry, Sarma) .	195
synthesis of pregnenolone by, (Koritz)	63	Azotobacter vinelandii, respiration in ——;	
Aldehyde oxidase, purification and proper-		oxygen inhibition of, (Dilworth)	127
ties of, (Palmer)	444	Bacteria, purple and green photosynthetic	
D-Altrose, 6-deoxy-; isolation of, from		sulphur —; enzymes of reductive	
chemically reduced hygromycin (EL-		pentose phosphate cycle in, (SMILLIE,	
BEIN, KOFFLER, GARNER)	165	RIGOPOULOS, KELLY)	612
D-Amino acid oxidase, apo-enzyme and		Betaine, methyl-transfer from; en-	
coenzyme and substrate of ——; com-		thalpy changes in, (DURELL, RAWIT-	
plex formation of, (YAG, OZAWA) 413,	420	SCHER, STURTEVANT)	552
Amino acids, incorporation of ——; effect	•	Bile acid methyl esters, gas chromatog-	J.J.~
of fatty acids on, (ACS, NEIDLE,		raphy of, (Holmes, Stack)	163
Schneiderman)	373	Brain, DPN nucleotidase from — of pig;	103
Amino acids, aliphatic; effect of, on	373	solubilization and purification of,	
activation of trypsinogen and on sta-		(WINDMUELLER, KAPLAN)	388
1. 11.4	599	Brain, metabolism of phosphoproteins in	300
Amino acids, free —; behaviour of, in	333	— tissue; precursors in, (Heald,	
nucleate and anucleate acetabularia		STANCER)	111
(Bremer, Schweiger, Schweiger)	380	14C kinetic isotope effects, —— in urease-	111
δ-Aminolevulinate dehydratase, —— ac-	-	catalyzed hydrolysis of urea; tempera-	
tivity in liver; relation of, to substrate		ture dependence of, (Lynn, Yankwich)	512
concentration (ONISAWA, LABBE)	618	Calcium ion, effect of, on in vitro synthesis	,,
Ammonium bases, quaternary —; inter-		of pregnenolone by rat adrenal prepa-	
		EOnomorous plant marchar breha-	

rations (KORITZ)	63	dation of, (Ackerman, Brill)	397
Carbon tetrachloride, changes in fatty acid		Cupro proteins, —— from human serum;	
composition of liver lipids induced by,		isolation and characterization of,	
(Horning, Earle, Maling)	175	(RICHTERICH, TEMPERLI, AEBI)	240
Carboxymethylcellulose, chromatography		Cyanocobalamin, absorption of — in rat;	•
on —; purification of trypsinogen		effect of fluoroacetate on, (LATNER,	
and trypsine of ox by, (Maroux,		Hodson)	185
Rovery, Desnuelle)	202	Dehydratase, δ-aminolevulinate — ac-	,
Cartilage, vertebral —; induction of,		tivity in liver; relation of, to substrate	
with low-molecular-weight tissue com-		concentration (ONISAWA, LABBE)	618
ponent in vitro (LASH, HOMMES, ZIL-		Dehydroepiandrosterone, 7-hydroxylation	0-0
LIKEN)	313	of, by rat-liver homogenate (STÁRKA,	
Casein, action of rennin on —; function	3.3		76
of neuraminic acid residues in, (GIB-		Kůtová)	76
		Dehydrogenase, crystalline supernatant	
BONS, CHEESEMAN)	354	malic — from beef heart; prepa-	
Cell, —— differentiation; induction of,		ration and properties of, (ENGLARD,	
(Lash, Hommes, Zilliken)		Breiger)	57 I
(Hommes, Van Leeuwen, Zilliken).	320	I-Dehydrogenase, steroid —— of Nocardia	
Cells, resting—of Rhodospirillum rubrum;		restrictus (Sih, Bennett)	584
early products of acetate incorporation		Dehydrogenases, intra- and extramito-	
in, (Benedict)	620	chondrial isocitrate——(Lowenstein,	
Ceruloplasmin, —— isolated from human		Smith)	385
serum; separation of, in two cupro		Diaphragm muscle, phosphogluconate oxi-	
proteins (Richterich, Temperli,		dation pathway in —; stimulation	
Aebi)	240	of, by pyruvate under anaerobic con-	
Chicken, spinal cords and notochords of	•	ditions (Beloff-Chain et al.)	153
— embryos; isolation of chondrogenic		Diphosphopyridine nucleotidase, — from	33
factor from, (Hommes, Van Leeuwen,		pig brain; solubilization and purifi-	
ZILLIKEN)	320	cation of, (WINDMUELLER, KAPLAN).	388
Chlorophyll a, separation of, from chloro-	3-0	Diphosphopyridine nucleotide, oxidized	300
phyll b and breakdown products by		— from mitochondria; mechanism	
paper chromatography (Holden)	277	of reduction of, coupled with oxidation	
Chlorophyll b, separation of, from chloro-	3//		
		of succinate (Slater, Tager, Snos-	
phyll a and breakdown products by		WELL)	177
paper chromatography (Holden)	377	Diphosphopyridine nucleotide, ——etha-	
Cholinesterase, serum —— treated with		nol reaction; mechanism of, (Kosower)	474
neuraminidase; properties of, (Augus-		Diphosphothiamine disulfide, occurrence	
TINSSON, EKEDAHL)	392	of, in baker's yeast (Olivo, Rossi,	_
Chondrogenic factor, isolation of, from		SILIPRANDI)	158
embryonic chick spinal cords and noto-		Disaccharides, utilization of —— by yeast;	
chords (Hommes, Van Leeuwen, Zil-		mechanism of, (De La Fuente, Sols)	49
LIKEN)	320	Electric eel, electric organ of —; inter-	
Chymotrypsinogen, partial structure of,		action of quaternary ammonium bases	
(Keil et al.)	595	with macromolecules from, (Hassón).	275
Clupeine, component of ——; chemical		Electric organ, — of electric eel; inter-	
structure of, (Ando, Iwai, Ishii, Aze-		action of quaternary ammonium bases	
GAMI, NAKAHARA)	628	with macromolecules from, (Hassón).	275
Cobalt, deficiency of —; effect of, on		Electron acceptor, effect of, on contractile	
utilization of nitrate nitrogen in Rhizo-		responses (KAMINER)	14
bium (NICHOLAS, MARUYAMA, FISHER)	623	Electron donors, effect of, on contractile	. 1
Coenzyme, —— of D-amino acid oxidase;	3	responses (Kaminer)	14
complex formation of, and apo-enzyme		Embryo, — of chicken; isolation of	- 4
and substrate (YAGI, OZAWA) 413,	120	chondrogenic factor from spinal cords	
Coenzyme A, β -hydroxy- β -methylglutaryl-	420	and notochords of, (Hommes, Van	
cycle in Rhodopseudomonas sphero-		Leeuwen, Zilliken)	220
ides; enzymes of, (CARR)	604	Endosymbiote, bacterial-type —; evi-	320
	004		
Coenzyme Q, —— in germ-free rat (BIERI,	600	dence for, in Herpetomonas (Strigo-	200
McDaniel)	002	monas) oncopelti (GILL, VOGEL)	200
Contractile responses, effects of electron	T.	Enzyme,—catalyzing phosphoramidate	
donors and acceptors on, (KAMINER).	14	phosphoryl transfer; properties of,	5 0 -
Cord, spinal —— of chick embryos; iso-		(FUJIMOTO, SMITH)	501
lation of chondrogenic factor from,	226	Enzyme, — preparation from P. aerugi-	
(Hommes, Van Leeuwen, Zilliken).	320	nosa; synthesis of a rhamnolipid by,	
Cow, xanthine oxidase from milk of;		(Burger, Glaser, Burton) Enzymes — of β-bydroxy-β-methyl-	172
kinetics of catalysis of vanthing ovi-		ranzymes —— or p-hydroxy-p-methyl-	

glutaryl-coenzyme A cycle in Rhodo-	_	Glycosides, — related to disaccharides;	
pseudomonas spheroides (CARR)	604	mechanism of utilization of, by yeast	
Enzymes, — of reductive pentose phos-		(DE LA FUENTE, Sols)	49
phate cycle in purple and green photo-		Haemolysis, inhibition of, by phlorizin	
synthetic sulphur bacteria (SMILLIE,	_	(Good)	359
RIGOPOULOS, KELLY)	612	Hamster, — small intestine; phlorizin	
Enzymic stimulation, non-specific —		as competitive inhibitor of active trans-	
in vivo; effect of pyrimido-pyrimidine		port by, (ALVARADO, CRANE)	170
derivative on, (LITWACK)	593	Heart, crystalline supernatant malic de-	
Ergothioneine, interrelationship between		hydrogenase from ox——; preparation	
— and phenolic hormones and per-	_	and properties of, (ENGLARD, BREIGER)	571
oxidase (Klebanoff)	460	Herpetomonas (Strigomonas) oncopelti, evi-	
Escherichia coli, alkaline phosphatase of		dence for bacterial-type endosymbiote	
; incorporation of inorganic phos-		in, (GILL, VOGEL)	200
phate into, (Engström)	606	Hexuronic acids, separation of, by ion-	
Escherichia coli, phosphoramidate phos-		exchange process (Dziewiatkowski).	167
phoryl transferenzyme extracted from,		Hormone, bovine parathyroid —; puri-	
(Fujimoto, Smith)	501	fication of, by gel filtration (Ras-	
Escherichia coli, pyridine nucleotide re-		MUSSEN, CRAIG)	332
duction by, associated with glucose		Hormones, phenolic —; interrelationship	
metabolism (Estabrook, Maitra,		between, and ergothioneine and per-	
Scott)	181	oxidase (Klebanoff)	460
Escherichia coli, ultraviolet-irradiated —;		Hormones, thyroidal —; correlation	
failure of, to produce a cross-reacting		between effects of, on hepatic mito-	
protein (MASTERS, PARDEE)	609	chondria and their fixation and metabo-	
Esterase, pseudocholine —— from horse		lism (ROCHE, RALL, MICHEL, MICHEL,	
serum; purification and properties of,		VARONNE)	188
(Jansz, Cohen)	531	Hormones, thyroidal —; induction of	
Esterase, serum choline —— treated with		β -hydroxy- β -methylglutaryl reductase	
neuraminidase; properties of, (Augus-		by, (Gries, Matschinsky, Wieland).	615
TINSSON, EKEDAHL)	392	Horse, pseudocholinesterase from —	
Ethanol, ——diphosphopyridine nucleo-		serum; purification and properties of,	
tide reaction; mechanism of, (Kosower)	474	(Jansz, Cohen)	531
Ethionine, changes in fatty acid compo-		β -Hydroxy- β -methylglutaryl-coenzyme A	
sition of liver lipids induced by, (Hor-		cycle, — in Rhodopseudomonas sphe-	
NING, EARL, MALING)	175	roides; enzymes of, (CARR)	604
Euglena gracilis, greening and biosynthesis		β -Hydroxy- β -methylglutaryl reductase,	
in —; effect of streptomycin on,		induction of, by thyroid gland hor-	
(Kirk)	139	mones (GRIES, MATSCHINSKY, WIE-	_
Fatty acid, —— composition of lecithin		LAND)	615
and its phospholipid precursors from		Hygromycin, chemically reduced —;	
mutant strain of N. crassa (HALL, NYC)	370	isolation of 6-deoxy-D-altrose from,	_
Fatty acid, —— composition of liver		(ELBEIN, KOFFLER, GARNER)	165
lipids; changes in, induced by CCl ₄ and		Indole-3-glycerol, formation of, by cell	
ethionine (Horning, Earle, Maling)	175	suspensions of Lactobacillus plantarum	
Fatty acids, effect of, on amino acid in-		(TELTSCHER, GIBSON)	152
corporation (Acs, Neidle, Schneider-	272	Inosine triphosphate, hydrolysis of ——	
MAN)	373	by myosin; effect of temperature on	
labelling by, (Gutmann, King)	204	rate of, (Levy, Sharon, Ryan, Kosh- Land Jr.)	0
Fluoroacetate, effect of, on cyanocobalamin		[131I]Insulin, interaction of normal human	110
absorption in rat (LATNER, HODSON).		serum with, (Duncombe, Mann)	T 0.3
Frog, outer membrane of —— skin; effect	105	Insulin, — receptor reaction; obser-	193
of thiol-group-blocking agents on,		vations on, (Fong, Silver, Popenoe,	
(Janáček)	42	DEBONS)	190
Gluconobacter liquefaciens, energy pro-	4~	Intestine, small —— of hamster; phlorizin	190
duction in, (STOUTHAMER)	19	as competitive inhibitor of active sugar	
Glucose, — metabolism; pyridine nucleo-	-9	transport by, (ALVARADO, CRANE)	170
tide reduction by $E. coli$ associated		Intestine, small —; characteristics of	-/0
with, (Estabrook, Maitra, Scott).	181	pyrimidine transport process of,	
Glucosyltransferase, uridinediphosphate-		(SCHANKER, TOCCO)	469
glucose-glycogen; specificity of,		Intestines, phosphatidate phosphatase	,-,
(Goldemberg)	357	from —; properties of, (Johnston,	
Glycerol, determination of, in phospha-		BEARDEN)	365
tides (Renkonen)	367	131-Iodine, amphioxus treated with ——;	

identification of labeled thyroxine and		Methionine, synthesis of, by enzymic trans-	
triiodothyronine in, (Tong, Kerkof,		methylation (Durell, Rawitscher,	
CHAIKOFF)	326	STURTEVANT)	55^{2}
corbate oxidation by oxygen; influence		S-methylmethionine bromide; enthalpy	
of sulfur compounds on, (PIHAR)	159	changes in, (Durell, Rawitscher,	
Isocitrate dehydrogenase, intra-and extra-	0,5	STURTEVANT)	552
mitochondrial —— (Lowenstein,		Methylmalonyl isomerase, purification	
Smith)	385	and properties of, (Herge, Miller,	
Isoleucine, biosynthesis of, in plants		Lane)	538
(SATYANARAYANA, RADHAKRISHNAN) .	197	S-Methylmethionine bromide, methyl	
Isomerase, methylmalonyl ——; purifi- cation and properties of, (HERGE,		transfer from —; enthalpy changes	
MILLER, LANE)	538	in, (Durell, Rawitscher, Sturte- Vant)	552
Isotopes, — emitting weak β -particles;) 3 0	Michaelis complexes, artificial —— of p-	552
simplified self-absorption correction		amino acid oxidase and "substrate	
for, (Evans Jr.)	349	substitutes"; crystallization of, (YAGI,	
Keratin, wool; fractionation of,		Ozawa)	420
(Blackburn)	I	Milk, xanthine oxidase from cow;	
Keratins, morphological components of		kinetics of catalysis of xanthine oxi-	
—; molecular structure of, (EAR-	269	dation by, (ACKERMAN, BRILL)	397
LAND, BLAKEY, STELL)	200	Mitochondria, hepatic ——; correlation between effects of thyroidal hormones	
of —; indole-3-glycerol formation by,		on, and their fixation and metabolism	
(TELTSCHER, GIBSON)	152	(ROCHE, RALL, MICHEL, MICHEL,	
Lecithin, — from mutant strain of	ŭ	Varonne)	188
Neurospora crassa; fatty acid compo-		Mitochondria, — isolated from Ehrlich	
sition of, (HALL, NYC)	370	ascites-tumour cells; pyridine nucleo-	
Lipids, liver —; changes in fatty acid		tide content of, (Borst, Colpa-	
composition of, induced by CCl ₄ and		Boonstra)	210
ethionine (Horning, Earle, Maling) Lipoproteins, soluble ——; composition	175	Mitochondria, rat-liver ——; influence of phosphorylcholine on endogenous oxi-	
and structure of, (Cook, Martin)	362	dative phosphorylation of, (Rossi,	
Liver, δ -aminolevulinate dehydratase ac-	302	SARTORELLI, SILIPRANDI)	156
tivity in —; relation of, to substrate		Molybdenum, —— toxicity in Aspergillus	5
concentration (ONISAWA, LABBE)	618	niger; influence of sulfur compounds	
Liver, rat — homogenate; 7-hydroxyl-		on, (Raman, Sivarama Sastry, Sarma)	195
ation of dehydroepiandrosterone by,		Muscle relaxing-factor system, separation	
(Stárka, Kůtová)	76	and properties of, (NAGAI, UCHIDA,	
Liver, rat — mitochondria; influence of		YASUDA)	205
phosphorylcholine on endogenous oxi- dative phosphorylation of, (Rossi,		oxidation of tyrosine and tyrosine-con-	
	156	taining peptides and proteins by, in	
Liver, —— lipids; changes in fatty acid	9	presence of ascorbic acid (ROLLAND,	
composition of, induced by CCl ₄ and		Lissitzky)	3, 95
ethionine (Horning, Earle, Maling)	175	Myosin, rate of hydrolysis of adenosine	
Lysine, synthesis of —; relation of, to		triphosphate and inosine triphosphate	0
phylogeny (GILL, VOGEL)	200	by ——; effect of temperature on,	110
Malic dehydrogenase, crystalline super- natant —— from beef-heart; prepa-		Nemin, protein with —— activity; purification and properties of, (KUYAMA,	
ration and properties of, (England,		Pramer)	631
Breiger)	57I	Neuraminic acid, —— residues of casein;	-5
Maltose, — fermenting systems in Sac-	<i>31</i>	function of, in action of rennin on	
charomyces cerevisiae; localization of		casein (Gibbons, Cheeseman)	354
(SUTTON, LAMPEN)	303	Neuraminidase, serum cholinesterase trea-	
Membrane, outer — of frog skin; effect		ted with, (Augustinsson, Ekedahl) Neurospora crassa, mutant strain of ——;	392
of thiol-group-blocking agents on, ([ANAČEK]	42	fatty acid composition of lecithin and	
Membranes, relationship of intracellular	7~	its phospholipid precursors from,	
distribution of sialic acid to, (PATTER-		(HALL, NYC)	370
SON, TOUSTER)	626	Nitrate, utilization of nitrogen in	
Mesaconate, enzymic hydration of, by		Rhizobium; effect of cobalt deficiency	600
Pseudomonas fluorescens (KATSUKI,		on, (NICHOLAS, MARUYAMA, FISHER). Nocardia restrictus, steroid I-dehydro-	023
Ariga, Katsuki, Nagai, Egashira, Tanaka)	545	genase of, (Sih, Bennett)	584
IANAKA)	ノサノ	0	., 1

Notochord, spinal —— of chick embryos;	and ergothioneine and phenolic hor-	
isolation of chondrogenic factor from,	mones (Klebanoff)	460
(Hommes, Van Leeuwen, Zilliken). 320	Phenolic hormones, interrelationship be-	1
Nucleotidase, diphosphopyridine — from	tween —— and ergothioneine and	
pig brain; solubilization and purifi-	peroxidase (Klebanoff)	460
	Phenoxyl groups, — of peptides of angio-	400
cation of, (WINDMUELLER, KAPLAN) . 388		
Ox, parathyroid hormone of —; purifi-	tensin; titration of, with sensitive	
cation of, by gel filtration (RASMUSSEN,	spectrophotometric method (PAIVA,	
CRAIG)	PAIVA)	339
Ox, trypsin of —; purification of, by	Phlorizin, —— as competitive inhibitor of	
chromatography on methylcellulose	active sugar transport by hamster small	_
(MAROUX, ROVERY, DESNUELLE) 202	intestine in vitro (ALVARADO, CRANE)	170
Ox, trypsinogen of —; purification of,	Phlorizin, inhibition of haemolysis by,	
by chromatography on carboxymethyl-	(Good)	359
cellulose (Maroux, Rovery, Desnu-	Phosphatase, alkaline — of E. coli; in-	
ELLE) 202	corporation of inorganic phosphate	
Ox, —— heart; preparation and proper-	into, (Engström)	606
ties of crystalline supernatant malic	Phosphatase, intestinal phosphatidate	
dehydrogenase from, (Englard,	—; properties of, (Johnston,	
Breiger) 571	Bearden)	365
Oxidase, aldehyde ——; purification and	Phosphatase, phosphatidic acid ——; dis-	-
properties of, (PALMER) 444	tribution and properties of, (COLEMAN,	
Oxidase, apo-enzyme and coenzyme and	Hübscher)	479
substrate of D-amino acid; com-	Phosphate, inorganic —; incorporation	.,,
plex formation of, (YAGI, OZAWA) 413, 420	of, into alkaline phosphatase of E. coli	
Oxidase, ascorbic acid; reaction in-	(Engström)	606
activation of, (TOKUYAMA, DAWSON) . 427	Phosphatidate phosphatase, intestinal—;	
Oxidase, succinic — system of respi-	properties of, (Johnston, Bearden).	365
ratory chain; inhibitory effects of	Phosphatides, determination of glycerol	303
quinones on, (REDFEARN, WHITTAKER) 440	in, (Renkonen)	267
Oxidase, xanthine — from cow's milk;	Phosphatidic acid phosphatase, distri-	367
kinetics of catalysis of xanthine oxi-		
detien by (Assessment Desse)	bution and properties of, (COLEMAN,	
dation by, (ACKERMAN, BRILL) 397	HÜBSCHER)	479
Oxygen, ascorbate oxidation by ——;	Phosphogluconate oxidation pathway,	
influence of sulfur compounds on ca-	stimulation of, by pyruvate under an-	
talysis of, by o-iodophenolate (PIHAR) 159	aerobic conditions in diaphragm muscle	
Oxygen, — inhibition in Azotobacter	and rat brown adipose tissue (Beloff-	
vinelandii pyruvate oxidation (DIL-	Chain et al.).	153
WORTH)	Phospholipid, — precursors of lecithin	
Parathyroid hormone, bovine —; puri-	from mutant strain of N. crassa; fatty	
fication of, by gel filtration (RAS-	acid composition of, (Hall, Nyc)	370
MUSSEN, CRAIG)	Phospholipids, metabolism of, (Coleman,	
Particles, microscopic —; orientation	HÜBSCHER)	479
of, in suspensions influenced by radio	Phosphoproteins, metabolism of —; pre-	
frequency fields (FÜREDI, VALENTINE) 33	cursors in, in cerebral tissue (Heald,	
β -Particles, weak —— emitted by iso-	STANCER)	III
topes; simplified self-absorption cor-	Phosphoramidate phosphoryl transfer en-	
rection for, (Evans) 349	zyme, —— extracted from E. coli;	
Pentose phosphate, reductive —— cycle	properties of, (Fujimoto, Smith)	501
in purple and green photosynthetic	Phosphoramidates, metabolism of (Hol-	
sulphur bacteria; enzymes of, (SMILLIE,	ZER, BURROW, SMITH)	491
RIGOPOULOS, KELLY)	(Fujimoto, Smith)	501
Peptides, —— containing tyrosine; oxi-	Phosphorylation, endogenous oxidative	J -
dation of, by mushroom polyphenol-	of rat-liver mitochondria; influ-	
oxidase in presence of ascorbic acid	ence of phosphorylcholine on, (Rossi,	
(ROLLAND, LISSITZKY) 83, 95	SARTORELLI, SILIPRANDI)	156
Peptides, —— of angiotensin; titration of	Phosphorylcholine, influence of, on endo-	-50
phenoxyl groups of, with sensitive	genous oxidative phosphorylation of	
spectrophotometric method (PAIVA,	rat-liver mitochondria (Rossi, Sarto-	
Paiva)	RELLI, SILIPRANDI)	156
Peptides, specific —; role of polypeptide	Phylogeny, relation of lysine synthesis to,	٠,٠٠
synthetases in formation of, in presence	(GILL, VOGEL)	200
of ribonucleoside triphosphates (Bel-	Pig, — brain; solubilization and purifi-	-50
janski, Beljanski, Lovigny) 559	cation of diphosphopyridine nucleo-	
Peroxidase, interrelationship between —	tidase from, (WINDMUELLER, KAPLAN)	388
_	. ,	5

Plants, biosynthesis of valine and iso-		tumour cells (Borst, Colpa-Boonstra)	216
leucine in, (Satyanarayana, Radha-	I	Pyrimidine, — transport process of	
KRISHNAN)	97	small intestine; characteristics of,	
Plasmalogens, products of mild alkaline		(Schanker, Tocco)	469
and mild acid hydrolysis of, (PIETRUSZ-	1	Pyrimido-pyrimidine derivative, effect of,	•
	32	on non-specific enzymic stimulation	
Polypeptide antigen, synthetic —; meta-		in vivo (Litwack)	593
17.5	44. I	Pyruvate, stimulation by, of phospho-	333
Polypeptide synthetases, role of, in for-	TT	gluconate oxidation pathway under	
		anaerobic conditions in diaphragm	
mation of specific peptides in presence			
of ribonucleoside triphosphates (Bel-		muscle and in rat brown adipose tissue	
JANSKI, BELJANSKI, LOVIGNY) 5		(Beloff-Chain et al.)	153
Polyphenoloxidase, — from mushroom;	1	Pyruvate oxidation, — in Azotobacter	
oxidation of tyrosine and tyrosine-con-		vinelandii; oxygen inhibition in, (Dil-	
taining peptides and proteins by, in		WORTH)	127
presence of ascorbic acid (Rolland,]	Pyruvic acid, oxidation of, in thyroid	
Lissitzky) 83,	95	tissue (Dumont)	382
Polysaccharide, purified acid — from		Quinones, inhibitory effects of, on succinic	
electric organ of electric eel; inter-		oxidase system of respiratory chain	
action of quaternary ammonium bases		(REDFEARN, WHITTAKER)	440
	75]	Rat, cyanocobalamin absorption in ——;	• •
Pregnenolone, in vitro synthesis of —— by	75 -	effect of fluoroacetate on, (LATNER,	
ret advand propagations: effect of Ca2+		Hodson)	185
rat adrenal preparations; effect of Ca ²⁺	62 1	Rat, — adrenal preparations; effect of	103
	63		
Propanol, 2,3-dimercapto-; oxidation of,		Ca ²⁺ and freezing on <i>in vitro</i> synthesis	6.
	75	of pregnenolone by, (Koritz)	63
Protein, labelling of, by 2-imino-1,2-fluo-	J	Rat, — brown adipose tissue; stimu-	
	94	lation of phosphogluconate oxidation	
Protein, synthesis of, in X-irradiated		pathway in, by pyruvate under an-	
P. spheroides (CLAYTON, ADLER) 2	57	aerobic conditions (Beloff-Chain	
Protein, —— with nemin activity; purifi-		et al.)	153
cation and properties of, (KUYAMA,		Rat, germ-free —; coenzyme Q in,	
Pramer) 6	31	(BIERI, McDaniel)	602
Protein, cross-reacting —; failure of]	Rat, ——-liver homogenate; 7-hydroxy-	
production of, by ultraviolet-irradiated		lation of dehydroepiandrosterone by,	
E. coli (Masters, Pardee) 6	09	(Stárka, Kůtová)	76
Protein, Rhodospirillum haem —; acid]	Rat, —— - liver mitochondria, influence	
and alkaline denaturation of, (Or-		of phosphorylcholine on endogenous	
LANDO) 2	52	oxidative phosphorylation of, (Rossi,	
Proteins, —— containing tyrosine; oxi-	_	SARTORELLI, SILIPRANDI)	156
dation of, by mushroom polyphenol-]	Reductase, β -hydroxy- β -methylglutaryl	_
oxidase in presence of ascorbic acid		; induction of, by thyroid gland	
(Rolland, Lissitzky) 83,	95	hormones (GRIES, MATSCHINSKY, WIE-	
Proteins, tyrosyl residues of ——; mecha-	73	LAND)	615
nism of oxidation of, by mushroom		RENNIN, action of —— on casein; function	
polyphenoloxidase (Lissitzky, Rol-		of neuraminic acid residues in, (GIB-	
polyphenoloxidase (Bissitzki, Roz	05	BONS, CHEESEMAN)	254
	95	Respiratory chain, succinic oxidase system	354
Proteins, cupro —— from human serum;		of —; inhibitory effects of quinones	
isolation and characterization of,			
	40	on, (REDFEARN, WHITTAKER)	440
Pseudocholinesterase, — from horse		Rhamnolipid, synthesis of, by enzyme	
serum; purification and properties of,		preparations from P. aeruginosa (Bur-	
(Jansz, Cohen) 5	3 I	GER, GLASER, BURTON).	172
Pseudomonas aeruginosa, enzyme prepa-		Rhizobium, effect of cobalt deficiency on	
rations from —; synthesis of a		utilization of nitrate nitrogen in,	_
rhamnolipid by, (Burger, Glaser,		(NICHOLAS, MARUYAMA, FISHER)	623
	72	Rhodospirillum haem protein, acid and	
Pseudomonas fluorescens, enzymic hydroly-		alkali denaturation of, (ORLANDO)	252
sis of mesaconate by, (KATSUKI, ARIGA,		Rhodospirillum rubrum, resting cells of	
KATSUKI, NAGAI, EGASHIRA, TANAKA) 5	545	; early products of acetate in-	_
Pyridine nucleotide, reduction of, associ-		corporation in, (Benedict)	620
ated with glucose metabolism by $E.coli$		Rhodopseudomonas spheroides, β-hydroxy-	
(ESTABROOK, MAITRA, SCOTT)	181	β -methylglutaryl-coenzyme A cycle in	
Pyridine nucleotide, — content of mito-		; enzymes of, (CARR)	604
chandria isolated from Ehrlich ascites-		Rhodopseudomonas spheroides, X-irradi-	

ated ——; protein synthesis and viability in, (CLAYTON, ADLER) Ribonucleoside triphosphates, formation	257	synthesis of, (KORNFELD, GLASER) Synthetases, polypeptide ——; role of, in formation of specific peptides in pres-	184
of specific peptides in presence of ——; role of polypeptide synthetases in,		ence of ribonucleoside triphosphates (Beljanski, Beljanski, Lovigny).	559
(Beljanski, Beljanski, Lovigny) Saccharomyces cerevisiae, sucrose and maltose fermenting systems in ——; locali-	559	Thiol-groups, agents blocking ——; effect of, on outer membrane of frog skin (Janáček)	42
zation of, (SUTTON, LAMPEN) Serum, —— cholinesterase treated with neuraminidase; properties of, (Augus-	303	Thymidine diphosphate amino-sugars, enzymic synthesis of, (Kornfeld,	•
TINSSON, EKEDAHL)	392	GLASER)	184
ties of pseudocholinesterase from, (Jansz, Cohen)	531	tween, and their fixation and metabolism (Roche, Rall, Michel, Michel,	
Serum, human —; isolation and characterization of two cupro proteins from,		Varonne)	188
(RICHTERICH, TEMPERLI, AEBI) Serum, normal human —; interaction	240	droxy- β -methylglutaryl reductase by, (Gries, Matschinsky, Wieland)	615
of, with [131I]insulin (DUNCOMBE, MANN)	193	Thyroid tissue, pyruvate oxidation in, (Dumont)	382
Sialic acid, intracellular distribution of ——; relationship of, to membranes		Thyronine, triiodo-; identification of la- beled —— in amphioxus treated with	
(PATTERSON, TOUSTER)	626	¹⁸¹ I (Tong, Kerkof, Chaikoff) Thyroxine, identification of labeled —— in amphioxus treated with ¹⁸¹ I (Tong,	326
(Janáček)	42	Kerkof, Chaikoff)	326
Spinal notochord, see Notochord, spinal		Tissue, low-molecular-weight component of —; in vitro induction of vertebral	
Spinal cord, see Cord, spinal ——;		cartilage with, (Lash, Hommes, Zil-	
Squalene, separation of, from sterols by	162	LIKEN)	313
gas chromatography (Holmes, STACK) Steroid I-dehydrogenase, —— of Nocardia	-	Tissue, cerebral —; precursors in metabolism of phosphoproteins in, (HEALD,	
restrictus (SIH, BENNETT) Sterols, separation of, from squalene by	584	STANCER)	III
gas chromatography (Holmes, Stack)	163	in, (DUMONT)	382
Streptomycin, effect of, on greening and		Transmethylation, enzymic —; synthesis	J
biosynthesis in Euglena gracilis (KIRK) Succinic acid, oxidation of ——; mecha-	139	of methionine by, (Durell, Rawitscher, Sturtevant)	
nism of reduction of mitochondrial		Trypsin, — of ox; purification of, by	552
DPN+ coupled with, (SLATER, TAGER,		chromatography on carboxymethyl-	
Snoswell)	177	cellulose (MAROUX, ROVERY, DESNU-	
ratory chain; inhibitory effects of qui-		Trypsin, stability of solutions of ——;	202
nones on, (Redfearn, Whittaker).	440	effect of aliphatic amino acids on,	
Sucrose, systems fermenting — in Sac-	77"	(GERATZ)	599
charomyces cerevisiae; localization of,		Trypsinogen, activation of —; effect of	Jyy
(SUTTON, LAMPEN)	303	aliphatic amino acids on, (GERATZ)	599
Sulfur bacteria, purple and green photo-		Trypsinogen, — of ox; purification of,	0,,,
synthetic —; enzymes of reductive		by chromatography on carboxymethyl-	
pentose phosphate cycle in, (SMILLIE, RIGOPOULOS, KELLY)	612	cellulose (Maroux, Rovery, Desnu-	200
Sulfur compounds, influence of, on cataly-	012	Tumour, Ehrlich ascites —— cells; pyridine	202
sis by o-iodophenolate of ascorbate		nucleotide content of mitochondria iso-	
oxydation by oxygen (PIHAR)	159	lated from, (Borst, Colpa-Boonstra)	216
Sulfur compounds, influence of, on molyb-	0,5	Tyrosine, oxidation of, by mushroom poly-	-10
denum toxicity in Aspergillus niger		phenoloxidase in presence of ascorbic	
(RAMAN, SIVARAMA SASTRY, SARMA) .	195	acid (Rolland, Lissitzky) 83	3. 95
Sugar, active transport of ——; phlorizin	,	Tyrosyl residues, —— of proteins; mecha-	,,
as competitive inhibitor of, by hamster		nism of oxidation of, by mushroom	
small intestine in vitro (ALVARADO,		polyphenoloxidase (Lissitzky, Rol-	
Crane)	170	LAND)	95
Sugars, mansport of, in yeast (DE LA FUENTE Sors)	40	Ubiquinone, see Coenzyme Q	
FUENTE, Sols)	49	Urea, hydrolysis of —— catalyzed by urease; temperature dependence of ¹⁴ C	
, chizyinic		aroaso, comperature dependence of MC	

kinetic isotope effects in, (Lynn, Yank-		oxidase from cow's milk; kinetics of	
WICH)	512	catalysis of, (Ackerman, Brill)	397
Urease, hydrolysis of urea catalyzed by		Xanthine oxidase, —— from cow's milk;	
—; temperature dependence of ¹⁴ C		kinetics of catalysis of xanthine oxi-	
kinetic isotope effects in, (LYNN, YANK-		dation by, (Ackerman, Brill)	397
wich)	512	Yeast, mechanism of utilization of disac-	
Uridine diphosphate glucose-glycogen		charides and related glycosides by,	
glucosyltransferase, specificity of,		(De La Fuente, Sols)	49
(Goldemberg)	357	Yeast, baker's ——; occurrence of di-	
Valine, biosynthesis of, in plants (SATY-		phosphothiamine disulfide in, (Olivo,	
ANARAYANA, RADHAKRISHNAN)	197	Rossi, Siliprandi)	158
Wool, — keratin; fractionation of,		Yeast, brewers ⁶ —; uptake of adenine	
(Blackburn)	I	by, (Harris, Thompson)	293
Xanthine oxidation of —— by xanthine			

ERRATA

BIOCHIMICA ET BIOPHYSICA ACTA, VOL. 52 (1961)

p. 212, line 31: change "0.05" into "0.01".

p. 600, 3rd footnote (***) to Table I: change "Dow Corning Corp." into "General Electric Company".

BIOCHIMICA ET BIOPHYSICA ACTA, VOL. 53 (1961)

p. 436, 3rd line below Table I: change "lyzed" into "talyzed".

p. 563: the drawing to the legend Fig. r should replace the drawing to the legend Fig. 2 and vice versa.

BIOCHIMICA ET BIOPHYSICA ACTA, VOL. 54 (1961)

p. 200, line 6: change "7.9" into "6.8". line 7: change "0.705" into "0.655".

p. 397, title: change "embroyos" into "embryos".

p. 441, line 22: change "by substituents" into "by ortho substituents.".

p. 469, Summary, line 4: change "I" into " $\Gamma/2$ ".

p. 473, Fig. 4, ordinate: change " $A_{1 \text{ cm}}^{1 \text{ %"}}$ " into " $E_{1 \text{ cm}}^{1 \text{ %"}}$ ".

p. 586, add between line 32 and 33: "of hemoglobin) cannot be checked with the present crystal form".